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Abstract
The (exclusion) statistics of parafermions is used to study degeneracies of
quasiholes over the paired (or in general clustered) quantum Hall states. The
focus is on the Zk and su(3)k/u(1)

2 parafermions, which are used in the
description of spin-polarized and spin-singled clustered quantum Hall states.

PACS numbers: 73.43.cd, 11.25.Hf

1. Introduction

In the last decade, low-dimensional systems in which the fundamental (quasi) particles do
not satisfy Bose or Fermi statistics have received a lot of attention. Among the most famous
examples are the fractional quantum Hall (fqH) systems. The quantum Hall states at simple
filling fractions ν = 1

M
, where M is an odd integer, are understood in terms of the famous

Laughlin states [1]. Quasiparticles (or quasiholes) over these states carry fractional charge
and satisfy fractional statistics.

In the last few years, generalizations of these states have been under investigation. Among
these generalizations are the so-called paired (or more general, clustered) quantum Hall states.
The notion of clustering will be explained in the next section. In the definition of these states,
parafermions play a predominant role. Ultimately, it is the presence of these parafermions
which causes the quasiholes to have peculiar statistical properties, namely, they obey ‘non-
Abelian’ statistics [2].

The simplest of the paired quantum Hall states is the Pfaffian state proposed by Moore
and Read [2]; it is believed that this state describes the quantum Hall effect at filling fraction
ν = 5

2 . This quantum Hall effect is special in the sense that it is the only quantum Hall effect
observed at a filling fraction with an even denominator (in single layer samples) [3, 4]. For
a recent review on this subject, see [5]. Clustered analogues of the paired Pfaffian state were
proposed by Read and Rezayi (RR) [6]. The states mentioned above are all spin-polarized;
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spin-singlet analogues were proposed in [7]. Recently, the bosonic versions of the RR states
were shown to be relevant in the context of rotating Bose–Einstein condensates [8].

The statistical properties of the parafermion fields will be investigated in this paper, with
the intention of obtaining closed form expressions for the ground state degeneracy of clustered
quantum Hall states in the presence of quasihole excitations, as described in [9, 10]. This state
counting problem is interesting for the following reasons. The clustered quantum Hall states
can be seen as ground states of a Hamiltonian with an (ultra local) interaction between the
electrons. Finding the ground state degeneracy of this Hamiltonian can be done in a conformal
field theory (CFT) approach, relying heavily on the statistical properties of the parafermionic
fields. Another approach is by numerically diagonalizing the interaction Hamiltonian for a
small number of electrons. This method can serve as a check on the analytical results of the
first approach. Thus, the quasihole degeneracies of a system of interacting electrons can be
understood in terms of parafermionic statistics!

In the context of the the spin-polarized states of Read and Rezayi, the Zk (or su(2)k/u(1))
parafermions are the relevant parafermions. For the ‘non-Abelian spin-singlet’ (NASS) states
of [7], the relevant parafermions are the parafermions related to su(3)k/u(1)

2 (see [11] for a
discussion on general parafermion CFTs).

The plan of the paper is as follows. We first recall in which way (clustered) quantum
Hall states can be constructed in CFTs (section 2). In section 3 we will shortly indicate the
setup of numerical diagonalization studies, because we need to adapt the calculations to the
setup in which these studies are done. The general structure of the counting formulae will be
indicated in section 4. It will become clear that the degeneracy consists of an intrinsic and
an orbital part, which need to be combined in the right way. The intrinsic degeneracy factors
need to be split to make this possible. The remainder of the paper is devoted to this task, as no
explicit expressions for these ‘split degeneracies’ were known for general level k > 2 for the
states under consideration. We will explain the procedure to obtain these expressions using
the su(3)2/u(1)

2 parafermions of the NASS state at level k = 2, as an example (see [10]).
The first step is to find a basis for the (chiral) spectrum of the parafermion CFT. Using this
basis, recursion relations for truncated characters will be derived (section 5). These recursion
relations can be solved using the results of section 6, providing expressions for the truncated
characters. From the explicit truncated characters, the ‘split degeneracies’ can be extracted.
Finally the counting formula for the paired spin-singlet states is obtained in section 7, filling
in some of the details of the discussion in [10]. In section 8, counting formulae for the RR
states at general level k are obtained, while section 9 deals with the counting formulae for the
general k NASS states. Section 10 is devoted to discussions. In this paper, we do not go into
the details of the numerical analysis, but refer to the papers [6, 9, 10, 12]. For all the cases
checked, the results of the numerical diagonalization studies are exactly reproduced by the
counting formulae.

2. Construction of clustered quantum Hall states

Clustered quantum Hall states are constructed as correlators in certain CFTs. But before we
come to this construction, let us first explain the nomenclature ‘clustered states’. Clustered
states (with order k clustering) have the following form:

�M
k ({zi}) = �k

bos({zi})
∏
i<j

(zi − zj )
M (1)
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where �k
bos is a bosonic factor (symmetric under the exchange of any two coordinates) with

the property {
�k

bos(z1 = z2 = · · · = zi) �= 0 i � k

�k
bos(z1 = z2 = · · · = zi) = 0 i > k

(2)

i.e. the wavefunction vanishes as soon as k + 1 or more particles are at the same location. Note
that we omitted the exponential factors of the wavefunctions. The factor

∏
i<j (zi −zj )

M is the
familiar Laughlin factor. The fermionic quantum Hall states all have M odd, while the bosonic
versions would have M even. Though changing M changes many properties of the states,
such as the filling fraction, the quasihole charge and statistics, the quasihole degeneracies are
unaffected, and the counting formulae presented in this paper hold for any M. Note that this
degeneracy is not to be confused with the ‘torus degeneracy’, which in fact does depend on M.

Following the pioneering paper [2], quantum Hall states can, under certain restrictions,
be defined as correlators in CFTs. For the clustered quantum Hall states, CFTs are used
with affine Lie algebra symmetry. The operators creating the electrons in general consist of
a parafermion field and a vertex operator of a set of r chiral boson fields (r is the rank of
the affine Lie algebra). These boson fields take care of the charge, spin and possibly other
quantum numbers associated with the particles. The electron creation operators take the form

Vel(zi) = ψα(zi) : eiβ·ϕ(zi) : (3)

where ψα is a parafermion field and ϕ is a set of free boson fields. The quantum Hall states
can be now be defined as follows:

�({zi}) = lim
z∞→∞ za∞

〈
Vel,1Vel,2 · · ·Vel,N : e−ib·ϕ(z∞) :

〉
. (4)

The parameter b in the background charge needs to be chosen in such a way that the overall
correlator is charge neutral. Here, a is chosen such that the effect of the background charge
does not go to zero in the limit z∞ → ∞, whilst keeping the result finite. Moreover, the
(unique) fusion of the parafermion fields ψ must result in the identity operator 1 in order to get
a non-zero correlator. This in general puts a restriction on the number of electrons N. In this
paper, we will not give explicit results for the correlators

(
and thereby the wavefunctions�M

k

)
.

These wavefunctions and other properties of the ground state, such as the filling fraction, can
be found in [6] for the Read–Rezayi states and in [10] for the spin-singlet analogues proposed
in [7]. A different form of the Read–Rezayi wavefunctions can be found in [13]. Also,
wavefunctions for states with quasiholes are presented there (see below).

States with excitations (quasiholes) present are also defined in terms of correlators in
the same CFT as the parent state, by inserting the corresponding quasihole operator in
the correlator. Certain properties of these quasiholes can be studied via the corresponding
correlators. A constraint on these operators follows from the condition that the wavefunction
has to be analytical in the electron coordinates (the lowest Landau level condition). This
implies that the quasihole operators need to be local with respect to the electron operators.
This constrains the quasihole operators to be of the following form:

Vqp(w) = σ� : eiβ′·ϕ(w) : (5)

where σ� is a ‘spin field’ of the parafermion CFT. Note that the nomenclature spin field does
not refer to the electron spin. Again, one has to insert a background charge to enforce charge
neutrality. Also, upon fusing the parafermion and spin fields, one has to fuse to the identity
operator 1 in the last step, to obtain a non-zero correlator. This constrains the possible particles
in the correlator. The fusion of the spin fields is not unique: in general there is more than
one fusion channel. This implies that a correlator with several quasihole operators in general



450 E Ardonne

stands for more than one quantum Hall state. In other words, the clustered quantum Hall states
with quasiholes are degenerate. It is this degeneracy which lies at the heart of non-Abelian
statistics.

One immediate question one can ask is how many states does one describe with such
correlators? In fact, this question can be answered in two independent ways. The first one is
via a numerical diagonalization study of interacting electrons on the sphere, in the presence of
a magnetic field. In this paper, we will follow the second approach, which is analytical, and
uses the conformal field theory of the underlying parafermions. But before we come to this
point, we have to spend some words on the numerical approach as well, in order to be able to
adapt the analytical approach to the numerical setup. This is the subject of the next section;
for more details, we refer to [10].

3. The setup of the numerical studies

Though we will not describe numerical diagonalization studies in depth in this paper, it is
necessary to point out briefly in which setup they are done, because we need to adapt our
calculations to be able to compare results. The numerical diagonalization is most easily done
on the sphere. The interaction between the electrons is chosen such that the clustered state
under investigation is the unique ground state (in the absence of quasihole excitations). Note
that this interaction is an ultra local, many-body interaction, rather different from the long
range Coulomb interaction. To ‘tune’ to the right filling fraction, a specific number of flux
quanta need to penetrate the sphere. States with quasiholes can be studied by increasing the
number of flux quanta (but keeping all the other parameters the same); this results in the
creation of quasiholes, as can be seen from the Laughlin gauge argument. The number of flux
quanta needed for a state on the sphere with quasiholes is given by

Nφ = 1

ν
N − S + �Nφ (6)

where N is the total number of electrons, and �Nφ the number of excess flux quanta, needed
for the creation of the quasiholes. S is an integer constant depending on the state under
investigation. Also, the number of quasiholes which are created by increasing the number of
flux quanta by one depends on the state under investigation. For the spin-polarized RR states,
this relation is given by n = k�Nφ , where n is the number of quasiholes. For the spin-singlet
analogues, we have n = n↑ + n↓ = 2k�Nφ .

For the clustered quantum Hall states with quasiholes present, the ground state is
degenerate (for the ultra local intraction). The degeneracy consists of two parts. First of
all, there is an orbital degeneracy, which is caused by the fact that in this setup, the quasiholes
are non-local. This orbital degeneracy is not specific for clustered states; it is also present
for the (unpaired) Laughlin states. For a system in which the quasiholes are localized, this
degeneracy would not be present. Secondly, there is an intrinsic degeneracy, which stems from
the non-trivial fusion rules of the spin fields,needed to create quasihole excitations. This source
of degeneracy is special for the clustered states. In this paper, we will focus on this intrinsic
degeneracy and obtain analytical expressions, which allow the combination with the orbital
degeneracy factors. This provides us with explicit expressions for the degeneracy of the
ground states, in the presence of quasiholes.

As spin and angular momentum are good quantum numbers, all the states obtained from
the numerical diagonalization fall into spin and angular momentum multiplets. The structure
of the counting formulae is such that the multiplet structure can also be extracted.
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Figure 1. Bratteli diagram for the spin fields of su(3)2/u(1)
2.

4. Degeneracy factors and counting formulae

The intrinsic degeneracy is caused by non-trivial fusion rules of the spin fields. As an example,
we will use the spin fields of the su(3)2/u(1)

2 parafermionic CFT. The fields and their fusion
rules in this theory can be determined according to the methods of [11] and are summarized
in table 1.We use the notation introduced in [10]. The parafermion fields are denoted by ψ ,
and all have conformal dimension �ψ = 1

2 . In particular, ψ1, ψ2, ψ12 correspond to the
roots α1, −α2 and α1 + α2 of su(3), respectively. The spin fields σ↑, σ↓, σ3 and ρ are related
to the weights of su(3) and their conformal dimensions are given by �σ = 1

10 and �ρ = 3
5 .

The fusion of an arbitrary number of σ↑,↓ fields can be depicted in a Bratteli diagram (see
also [10]). Each arrow in the diagram in figure 1 stands for either a σ↑ or a σ↓ field. The
arrow starts at a certain field which can only be the one on the left of the diagram at the same
height. This last field is fused with the one corresponding to the arrow, which points at a field
present in this fusion. As an example, the arrows starting at the ∗ are encoding the fusion rules
ρ × σ↑(↓) = ψ2(1) + σ↑(↓) and σ3 × σ↑(↓) = ψ1(2) + σ↓(↑). One checks that the diagram is in
accordance with the first two columns of table 1.

Table 1. Fusion rules of the parafermion and spin fields associated with the parafermion theory
su(3)2/u(1)2introduced by Gepner [11].

× σ↑ σ↓ σ 3 ρ ψ1 ψ2 ψ12

σ↑ 1 + ρ

σ↓ ψ12+ σ 3 1 + ρ

σ 3 ψ1 + σ↓ ψ2 + σ↑ 1 + ρ

ρ ψ2 + σ↑ ψ1 + σ↓ ψ12+ σ 3 1 + ρ

ψ1 σ 3 ρ σ↑ σ↓ 1
ψ2 ρ σ 3 σ↓ σ↑ ψ12 1
ψ12 σ↓ σ↑ ρ σ 3 ψ2 ψ1 1

From figure 1, one immediately notes that in general there is more than one fusion path
of spin fields with leads to the identity (possibly the identity is reached only after the fusion
with the parafermion fields ψ1,2 of the electron operators). It is easily seen that the number of
fusion channels starting from and terminating at 1 while n↑ σ↑ and n↓ σ↓ spin fields are fused
is given by

dn↑,n↓ = F(n↑ + n↓ − 2) (7)

where F(n) is the nth Fibonacci number, defined by F(n) = F(n − 1) + F(n − 2) with the
initial conditions F(0) = 1 and F(1) = 1. Next to this intrinsic degeneracy, there is an orbital
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degeneracy. These orbital degeneracy factors can be found in [9, 10] for the states discussed
in this paper. These factors have the general form∏

i

(
ni −Fi

k
+ ni

ni

)
. (8)

The product is over the types of quasiholes, while the numbers Fi are interpreted as the number
of ‘unclustered’ particles in the state. In the correlators, these correspond to the fundamental
parafermions ψ i. For each fusion path, these numbers can be different, implying that we have
to split the intrinsic degeneracy according to these numbers. We denote these ‘split degeneracy

factors’ by {}k. Explicitly, we have
{
n

F

}
k

and
{
n↑ n↓
F1 F2

}
k

for the RR and NASS states, respectively.

Using the above notation, the counting formula for the clustered spin-singlet quantum
Hall states take the following form:

#NASS(N,�Nφ, k) =
∑′

N↑,↓,n↑,↓,F1,2

{
n↑ n↓
F1 F2

}
k

(N↑−F1

k
+ n↑

n↑

)(N↓−F2

k
+ n↓

n↓

)
(9)

where the prime on the summation indicates the presence of constraints (see below
equation (51)). The equivalent counting formula for the Read–Rezayi states is given in
equation (43).

The new result of this paper is the explicit split degeneracy factors for the Zk and
su(3)k/u(1)

2 parafermions at level k > 2 (for k = 2, these factors can be found in [12]
and [10] respectively). Previously, these factors for the Zk parafermions (k > 2) could only be
characterized via recursion relations, see [9, 14]. Note that the results in this paper are easily
extended to the more general su(N)k/u(1)

N−1 parafermions.
We will now briefly outline in which way the split degeneracy factors are obtained. The

starting point is the character of the parafermionic CFT. The symbols {}k can be extracted
from finitized forms of these characters [9] (see also [15]). Recursion relations for these
finitized characters can be derived from an explicit basis of the parafermionic CFT. These
recursion relations will be written in a way that allows for an explicit solution, from which the
symbols {}k can be extracted. In the sections 5–7, we will demonstrate this for the level k = 2
spin-singlet states of [7].

5. A basis for the su(3)2/u(1)2 parafermion theory

In this section, we briefly describe how an explicit basis for the chiral spectrum of the
su(3)2/u(1)

2 parafermion CFT is formed. The starting point is the chiral character for the
parafermions in the su(3)2/u(1)

2 conformal field theory. This character can be written in the
form of a ‘universal chiral partition function’ (UCPF) see, for instance [16, 17]. This character
reads [18]

ch(x1, x2; q, k = 2) =
∑
n1,n2

q(n
2
1+n2

2−n1n2)/2

(q)n1(q)n2

x
n1
1 x

n2
2 . (10)

In this character, xi = eβµi are fugacities of the particles, and q = eβε(β is the inverse
temperature). (q)a is defined by (q)a = ∏a

k=1(1 − qk) for a > 0 and (q)0 = 1.
The bilinear form in the exponent of q is described by the matrix

K =
(

1 − 1
2

− 1
2 1

)
. (11)

The same matrix also describes the exclusion statistics of these parafermions. More
information on the relation between exclusion statistics and the UCPF can be found in [19].
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A basis for a CFT can be thought of as a set of states spanning the chiral Hilbert space.
This set of states can be written as (a set of) vacuum state(s), on which creation operators act.
The parafermions ψ1,2(z) in the su(3)2/u(1)

2 theory can be expanded in modes as

ψ1,2(z) =
∑
m∈Z

z−mψ
1,2
m− 1

2
. (12)

As usual, the modes ψm with negative index are the creation operators while the modes with
positive index annihilate the vacuum

ψm|0〉 = 0 m > 0. (13)

The set of states

ψ
an−sn

ψ
an−1
−sn−1

· · ·ψa1−s1
|0〉 (14)

is overcomplete, because of the (generalized) commutation rules of the parafermions. In
the following, we will point out which restrictions on the indices si will remove the
‘overcompleteness’. In doing so, we will follow the exclusion interpretation of the K-matrix
as closely as possible and concentrate on the lowest possible ‘energy’

(
given byL0 = ∑

i si
)

for a certain number of applied fields first. The ordering of the modes ψ1,2 is such that we
apply the ψ1 modes first. From (12) it follows that the simplest non-trivial state is

ψ1
−1/2|0〉. (15)

Interpreting the matrix (11) as the exclusion statistics matrix, the minimal spacing between
two ψ1 modes is 1, thus the state with two ψ1’s acting on the vacuum with minimal energy is

ψ1
−3/2ψ

1
−1/2|0〉. (16)

The extension to n1 ψ
1 modes is simple

ψ1
−(2n1−1)/2 · · ·ψ1

−3/2ψ
1
−1/2|0〉. (17)

Note that if this were the whole story, we would describe the (free) Majorana fermion. The
spacing between ψ2 modes is the same as for the ψ1 modes. However, if one acts with ψ2 on a
state in which ψ1 modes are already present, one has to take into account the mutual statistics
between ψ1 and ψ2 modes, which is −1/2, according to (11). Thus the energies of the ψ2

modes have an extra shift of −n1/2, resulting in the following states (with minimal energy)

ψ2
−(2n2−1−n1)/2 · · ·ψ2

−(3−n1)/2ψ
2
−(1−n1)/2ψ

1
−(2n1−1)/2 · · ·ψ1

−3/2ψ
1
−1/2|0〉. (18)

The (dimensionless) energy associated with this state is n2
1+n2

2−n1n2

2 , precisely the exponent of
q in the character (10). To obtain all the possible states, one has to allow states with higher
energies as well. As usual [14], the energies of all the modes can have integer shifts, under the
restriction that modes acting on a state have larger energies than the modes of the same type
which have been applied earlier. This results in the following set of states:

ψ2
−(2n2−1−n1)/2−tn2

· · ·ψ2
−(3−n1)/2−t2

ψ2
−(1−n1)/2−t1

ψ1
−(2n1−1)/2−sn1

· · ·ψ1
−3/2−s2

ψ1
−1/2−s1

|0〉 (19)

with sn1 � · · · � s2 � s1 � 0 and tn2 � · · · � t2 � t1 � 0 (si, tj ∈ N).
Up to now, we used the special ordering of applying modes to the vacuum, namely, all the

ψ1 modes first. This is in fact enough to span the whole chiral spectrum, as can be seen if we
perform the trace over all basis states. More or less by construction, we obtain the character
(10). However, we also can allow a general ordering of the modes. As an example, we take
the following state:

ψ2
−0ψ

1
−1/2|0〉. (20)
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The energy of the ψ2 mode is zero because it gets an extra shift of −1/2 due to the presence
of the ψ1 mode. In spanning the whole chiral spectrum, we can also choose to use the state,
with the order of the modes changed

ψ1
−0ψ

2
−1/2|0〉. (21)

In this case, the ψ1 mode gets an extra shift of −1/2, because of the presence of the ψ2

mode. Thus, the L0 value is the same for both states. In general, changing the order of two
neighbouring ψ1 and ψ2 modes does not change the L0 value if the extra shifts are changed
in the appropriate way. The extra shift of a field is given by −1/2 times the number of
preceding modes of the other type. In general, two states related by a reordering of modes
are different, but we can use either of them (but not both) to span the chiral spectrum. Note
that the rules of the spacing between the various fields is in accordance with the (exclusion)
statistical interpretation of the matrix K. The character (10) is obtained by taking the trace
over all the states in the basis (19)

ch(x1, x2; q) = Tr xn1
1 x

n2
2 qL0 . (22)

We can now define the finitized characters needed in the derivation of the symbols {}k by using
the basis described above. These finitized characters are polynomials which will be denoted
by Y(l,m). These polynomials are traces over the basis (19), but restricted to the states in which
the energy of the modes of the ψ1 (ψ2) fields are smaller or equal to l (m). Though the total
energy of a state does not depend on the ordering of the modes, the energies of the individual
modes do depend on the ordering, as can be seen by comparing the states (20) and (21). By
restricting the trace over states in which the labels of the modes are bounded, we must include
a state if there is at least one ordering in which all the modes satisfy the bounds imposed.
Note that there may be other orderings, in which these bounds are not satisfied. We write the
finitized characters as

Y(l,m)(x1, x2; q) = Tr′
�l,�m

x
n1
1 x

n2
2 qL0 . (23)

The prime on the trace denotes an important restriction on the number of modes (denoted by
n1 and n2) present in the states. These numbers must satisfy n1 = 2l (mod 2) and n2 = 2m
(mod 2).

This restriction takes into account that after fusing the spin fields, one ends up in the right
sector, which can be 1, ψ1, ψ2 or ψ12 depending on the number of spin-up and down electrons.
This is necessary, because after fusing the spin fields and the parafermion fields of the electron
operators, one has to end with the identity 1, to obtain a non-zero correlator.

The finitized charactersY(l,m) can be written in terms of recursion relations of the following
form:

Y(l,m) = Y(l−1,m) + x1q
l− 1

2 Y(l−1,m+ 1
2)

Y(l,m) = Y(l,m−1) + x2q
m− 1

2 Y(l+ 1
2 ,m−1). (24)

Note that the above recursion relations are stated in terms of the energy labels of the modes.
Our aim is to find the number of possible states when a certain number of extra flux is added.
We therefore need to make a change to labels which depend on the additional flux. In fact, we
will use the number of particles (given by n↑ and n↓ in this case) created by this flux as labels
for the finitized partition functions. Explicitly, we have l = n↑

2 and m = n↓
2 . In terms of the

number of created quasiholes, the recursion relations become (compare [10])

Y(n↑,n↓) = Y(n↑−2,n↓) + x1q
n↑−1

2 Y(n↑−2,n↓+1) Y(n↑,n↓) = Y(n↑,n↓−2) + x2q
n↓−1

2 Y(n↑+1,n↓−2).

(25)

The initial conditions for these recursion relations look as follows:

Y(1,0) = Y(0,1) = 0 Y(0,0) = Y(2,0) = Y(0,2) = 1 Y(1,1) = q
1
2 x1x2. (26)
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The finitized characters are completely described by (25) and (26). In the next section, we
will solve these recursion relations and thereby provide explicit expressions for the finitized
characters.

6. Recursion relations and solutions

The recursion relations of the previous section can be solved explicitly; we will follow the
approach of [20]. The key observation is that the recursion relations can be matched to general
recursion relations, which are solved in terms of finitizations of universal chiral partition
functions. Consider the following polynomials P:

PL(z; q) =
∑
m

(∏
i

z
mi

i

)
q

1
2 m·K·m+Q·m∏

i

[
(L + (I − K)·m + u)i

mi

]
. (27)

In this equation, I is the identity matrix, K the statistics matrix and
[
a

b

]
the q-deformed

binomial (q-binomial)[a
b

]
=
{

(q)a
(q)b(q)a−b

a, b ∈ N ; b � a

0 otherwise
. (28)

Note that we defined the q-binomial to be non-zero only if both entries are integers greater or
equal to zero, to avoid additional constraints on the sums in the counting formulae.

From the definition of the q-binomials, the following identity is easily derived[a
b

]
=
[
a − 1

b

]
+ qa−b

[
a − 1

b − 1

]
. (29)

Replacing the ith q-binomial factor in (27) by the right-hand side of (29), one finds the
following recursion relations

PL(z; q) = PL−ei
(z; q) + ziq

− 1
2 Kii+Qi+ui+Li PL−K·ei

(z; q). (30)

The vector ei represents a unit vector in the ith direction. We will use the equivalence between
(27) and (30) frequently, because the recursion relations we encounter in deriving the counting
formulae are all of type (30). Of course, upon deriving polynomials from recursion relations,
one has to take the initial conditions into account. For the counting we need to know the
finitizations of the character formulae, and these can be written in the form (27). Thus, when
we solve recursion relations by polynomials of the form (27), the proper initial conditions are
automatically taken into account.

We start by applying the above to the recursion relations (24), resulting in the following
expressions for the truncated characters Y(n↑,n↓)

Y(n↑,n↓)(x1, x2; q) =
∑
a,b

q(a2+b2−ab)/2xa
1x

b
2

[
n↑+b

2

a

][
n↓+a

2

b

]
. (31)

This result will be needed for the final counting formula, which we give in the next section.

7. A counting formula for the NASS state at k = 2

From the truncated characters of the previous section, we can obtain the symbols {}2, needed
in the counting formula of equation (9). In fact, the symbols {}2 are obtained by taking the
limit q → 1 of the coefficient of xF1

1 x
F2
2 in equation (31) (see, for instance, [9, 10])

Y(n↑,n↓)(x1, x2; 1) =
∑
F1,F2

x
F1
1 x

F2
2

{
n↑ n↓
F1 F2

}
. (32)
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In this limit, the q-binomials in (31) become ‘ordinary’ binomials and we find{
n↑ n↓
F1 F2

}
2

=
(

n↑+F2

2

F1

)(
n↓+F1

2

F2

)
. (33)

The fact that the finitized characters indeed provide the symbols {} is rather non-trivial. This
connection was first proposed in [9]. Some (restricted) ‘solid on solid’ (SOS) models (see,
for instance [21]) can be mapped to the Bratteli diagrams of the spin fields of the quasiholes.
Recursion relations for the partition functions for these models (at finite size) are in general
equivalent to recursion relations for finitized characters in certain CFTs. In the case at hand,
the corresponding CFT is the parafermion CFT. This provides a link between the Bratteli
diagrams and the parafermion theories. As a check, one can calculate the number of fusion
paths for the spin fields by summing over the symbols {} and compare to the result obtained
from the diagram itself. In this specific case, the equivalence follows from the structure of the
recursion relations (see for instance [10]), giving rise to the identity

∑′

F1,F2

(
n↑+F2

2

F1

)(
n↓+F1

2

F2

)
= F(n↑ + n↓ − 2). (34)

The prime on the summation denotes the constraints F1 ≡ n↓ (mod 2) and F2 ≡ n↑
(mod 2). At the level of the wavefunctions, the degeneracy is due to the presence of particles
which do not belong to a cluster any more. At the level of correlators, these unclustered
particles correspond to parafermions ψ1 and ψ2, which act as ‘cluster breakers’. In the case
of the Pfaffian state, this was made explicit in [12].

The counting formula for the NASS state at k = 2 is obtained by inserting the symbol
(33) in the general counting formula (9)

#(N,�Nφ, k = 2) =
∑′

N↑,↓,n↑,↓,F1,2

(
n↑+F2

2

F1

)(
n↓+F1

2

F2

)(
N↑−F1

2 + n↑
n↑

)(
N↓−F2

2 + n↓
n↓

)
(35)

where the prime on the sum indicates the constraints N↑ + N↓ = N , n↑ + n↓ = 4�Nφ and
N↑ − N↓ = n↓ − n↑.

We will now comment on the spin and angular momentum multiplet structure. As an
example, we will write out the polynomial Y(7,1)

Y(7,1) =
(
q

1
2 + q

3
2 + q

5
2 + q

7
2

)
x1x2 +

(
q

7
2 + 2q

9
2 + 2q

11
2 + 2q

13
2 + q

15
2

)
x3

1x2 + q
19
2 x5

1x
3
2 . (36)

After multiplying the coefficient of xF1
1 x

F2
2 with (in general) q−(n↑F1+n↓F2)/4, one obtains a sum

of terms of the form qlz , which together form a collection of angular momentum multiplets
with quantum numbers lz. For instance, the coefficient of x3

1x2 in equation (36) encodes two
multiplets, namely L = 2 and L = 1.

An alternative way to obtain these results is by associating angular momentum multiplets
with the binomials in equation (35). The binomials

(
a

f

)
forming the symbols {}2 need to be

interpreted as the number of ways one can put f fermions in a boxes, which are labelled with
lz = − (a−1)

2 ,− (a−1)
2 +1, . . . , (a−1)

2 angular momentum quantum numbers. Each way of putting
the f fermions in a boxes has an ltot

z associated with it. Together, these ltot
z quantum numbers

fall into angular momentum multiplets. In this way, angular momentum multiplets can be
associated with the binomials. The angular momentum multiplets of the various binomials in
the counting formula need to be added in the usual way.

Though the parafermion theory does not have a proper SU (2) spin symmetry, one can
associate spin quantum numbers with every state by taking Sz = N↑−N↓

2 . Combining the spin
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and angular momentum, one finds that all the states fall into spin and angular momentum
multiplets.

The numerical diagonalization studies for the NASS state at level k = 2 are described in
[10]. It is very gratifying to see that the counting formula equation (35) does in fact exactly
reproduce the quasihole degeneracies, as well as the multiplet structure.

In order to find the counting results for the spin-singlet states at general level-k, we first
take a closer look at the counting of the Read–Rezayi states, which was in fact done in [9].
Those results however, were stated in terms of recursion relations which are difficult to solve.
The advantage of the recursion relations presented in the next section is that they can easily
be solved in terms of (q-deformed) binomials, and thus provide explicit expressions for the
symbols {}k.

8. Counting formulae for the Read–Rezayi states

The derivation of the counting formulae for the RR states goes along the same lines as the
derivation for the NASS k = 2 states as explained in the previous sections. Therefore, we do
not go into full detail, but concentrate on the parts which need more explanation.

We start with the character of the su(2)k/u(1) parafermionic theory (see [22]), which can
be obtained from [23, 18, 24]

ch(x; q, k) =
∑
ai

q
1
2 (a·Ck−1·a)∏

i (q)ai
xiai (37)

where a = (a1, . . . , ak−1) and Ck−1 = 2A
−1
k−1, Ak−1 being the Cartan matrix of su (k). In

components, these matrices are given by

(Ak−1)i,j = 2δi,j − δ|i−j |,1
(
A

−1
k−1

)
i,j

= min(i, j) − ij

k
i, j = 1, . . . , k − 1. (38)

In fact, Ck−1 is the K-matrix for the Zk parafermions, see [17]. The parafermions in this
theory are ψ0, ψ1, . . . ψk−1 (ψ0 is the identity 1 and the labels are defined modulo k). By
writing xiai in the character (37), we take care of the fact that the fugacity of species i is i
times the fugacity of the first type of particle. In fact, the ith species can be thought of as a
‘composite’ of i particles of species 1. This point of view is supported by the fusion rules for
these parafermions ψ1 × ψp = ψp + 1, with p = 1, . . . , k − 1. This structure is also present in
the K-matrix structure describing the Read–Rezayi states [25, 26, 19].

A basis for the chiral spectrum can be constructed in the same way as described in
section 5. The shifts in modes between the various fields are given by the elements of the
matrix K. We will now proceed by directly giving the corresponding recursion relations

Yl(x; q, k) = Yl−ei
+ xiqli− i(k−i)

k Yl−Ck−1·ei
. (39)

The factor i(k−i)

k
is the conformal dimension of the ith parafermion in the Zk-parafermion

theory. These recursion relations are solved by the following polynomials

Yl(x; q, k) =
∑
ai

q
1
2 (a·Ck−1·a)

k−1∏
i=1

xiai

[
(l + (Ik−1 − Ck−1)·a)i

ai

]
(40)

where Ik−1 denotes the (k − 1)-dimensional unit matrix. To obtain the counting results, we
have to specify the truncation parameters li. As in the NASS case for k = 2, we will do this
in terms of the number of particles created by the extra flux, given by n = k � Nφ for the
states under consideration. Because the chemical potential of species i is i times the chemical
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potential of species 1, the truncation parameter li has to be scaled with a factor i with respect to
l1 (see, for instance, [19]), which is found to be l1 = n

k
. This leads to the following truncation

parameters li = in
k

, and the truncated characters needed for the counting become

Yn(x; q, k) =
∑
ai

q
1
2 (a·Ck−1·a)

k−1∏
i=1

xiai

[
in
k

+ ((Ik−1 − Ck−1)·a)i
ai

]
. (41)

To obtain the symbols
{
n

F

}
k

which are needed for the counting, one has to take the limit q → 1
of the prefactor of xF in equation (41). This results in

{n
F

}
k

=
∑

∑
iai=F

k−1∏
i=1

(
in
k

+ ((Ik−1 − Ck−1)·a)i
ai

)
. (42)

With this result, we arrive at the following counting formula for the Read–Rezayi states (for
general k)

#RR(N,�Nφ, k) =
∑
F

{n
F

}
k

(
N−F
k

+ n

n

)
(43)

with n = k � Nφ. To make the above (in particular the symbols {}k) more explicit, we will
discuss the k = 2 (i.e. the Pfaffian) and k = 3 cases. For the Pfaffian state counting, we need

to know the symbols {}2. Equation (42) with k = 2 gives
{
n

F

}
2 =

(
n
2
F

)
. Of course, this is just

the result already found in [12]. Note that our notation is slightly different with respect to
that used in [12, 9]. In our notation, we denote the number of created quasiholes by n. In
[9, 12], n denoted the number of extra fluxes, which is denoted by �Nφ in this paper.

Although the method described above seems to be unnecessarily complicated to reproduce
this result, it is very useful for obtaining closed expressions for k > 2. As an illustration, we
will discuss the case k = 3, and compare our results with [9]. For k = 3, the polynomials are
given by the following expression:

Yn(x; q, 3) =
∑
a,b

q
2
3 (a

2+b2+ab)xa+2b

[
n
3 − a+2b

3
a

] [ 2n
3 − 2a+b

3
b

]
. (44)

Indeed, these polynomials reduce to those in [9], upon setting q = 1. The symbols {}3 are now
easily written down{n

F

}
3

=
∑

a+2b=F

(
n
3 − a+2b

3
a

)( 2n
3 − 2a+b

3
b

)
. (45)

Note that only a finite number of terms contribute to the sum in equation (45). In fact, this is
true for all the symbols (42) with n finite.

The fusion rules for the spin field σ which is part of the quasihole operator at level
k = 3 (see [6]), can be encoded in a Bratteli diagram with the same structure as the diagram 1
(note that the fields differ, of course). This is a consequence of the rank-level duality
su(2)3 ↔ su(3)2 (see section 16.6 in [27]). Thus the total intrinsic degeneracy for the k = 3
Read–Rezayi state with n quasiholes is given by dn = F(n − 2). Indeed, by summing the
symbols

{
n

F

}
3 over F, this result is reproduced.

The angular momentum multiplets can be found in the same way as described in section 7.

Let us note that for k = 1 the only degeneracy factor remaining is
(
N+n
n

)
, which is precisely

the orbital factor for the Laughlin states with quasiholes present. This was of course to be
expected, as the k = 1 Read–Rezayi states are in fact the Laughlin states.
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To conclude the discussion on the counting for the Read–Rezayi states, we would like to
mention that the numerical studies as presented for k = 3 in [9] are in complete agreement
with the counting formulae. At this point, no numerical results are available for k � 4. In the
following section we will turn our attention to the counting of the NASS states for a general
level.

9. Counting formulae for the NASS states

In this section, we describe the counting for the NASS states at general level k. We will
closely follow the procedure of the previous sections, that is, we start by writing down the
chiral character corresponding to the su(3)k/u(1)

2 parafermions [18, 24]

ch(x1, x2; q, k) =
∑
ai ,bj

q
1
2 (a·Ck−1·a+b·Ck−1·b−a·Ck−1·b)∏

i,j (q)ai (q)bj
x
iai
1 x

jbj
2 (46)

where we used the same notation as in equation (37). This character is of the UCPF form with

the K-matrix equal to the K-matrix of the su(3)k/u(1)
2 parafermions: K =

(
2 −1

−1 2

)
⊗ A

−1
k−1

[17]. The recursion relations corresponding to the basis of this theory can be written in the
following way:

Y(l,m)(x1, x2; q, k) = Y(l−ei ,m) + xi
1q

li− i(k−i)

k Y(l−Ck−1·ei ,m+ 1
2 Ck−1·ei ) (47)

Y(l,m)(x1, x2; q, k) = Y(l,m−ej ) + x
j

2q
mj− j (k−j )

k Y(l+ 1
2 Ck−1·ej ,m−Ck−1·ej ).

Once again, we solve the recursion relations by matching these recursions to equation (30).
The truncated characters take the form

Y(l,m)(x1, x2; q, k) =
∑
ai ,bj

q
1
2 (a·Ck−1·a+b·Ck−1b−a·Ck−1b)

×
k−1∏
i=1

x
iai
1

[(
l + (Ik−1 − Ck−1) ·a + 1

2 Ck−1 · b)
i

ai

]

×
k−1∏
j=1

x
jbj
2

[(
m + (Ik−1 − Ck−1) · b + 1

2 Ck−1 ·a)
j

bj

]
. (48)

We continue by specifying the parameters li and mj. We have to use the same construction as
in the RR case, with the difference that we now need the number of spin-up and spin-down
particles (denoted by n↑ and n↓) created by the excess flux. Using li = in↑

k
and mj = jn↓

k

results in

Y(n↑,n↓)(x1, x2; q, k) =
∑
ai ,bj

q
1
2 (a · Ck−1 · a+b · Ck−1 · b−a · Ck−1 · b)

×
k−1∏
i=1

x
iai
1

[
in↑
k

+
(
(Ik−1 − Ck−1) ·a + 1

2 Ck−1 · b)
i

ai

]

×
k−1∏
j=1

x
jbj
2

[
jn↓
k

+
(
(Ik−1 − Ck−1) · b + 1

2 Ck−1 · a)
j

bj

]
. (49)
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From equation (49) we obtain the symbols
{
n↑ n↓
F1 F2

}
k

by taking the limit q → 1 of the coefficient

of xF1
1 x

F2
2{

n↑ n↓
F1 F2

}
k

=
∑

∑
iai=F1∑
jbj=F2

k−1∏
i=1

(
in↑
k

+
(
(Ik−1 − Ck−1) ·a + 1

2 Ck−1 · b)
i

ai

)

×
k−1∏
j=1

(
jn↑
k

+
(
(Ik−1 − Ck−1) · b + 1

2 Ck−1 ·a)
j

bj

)
. (50)

Now we have specified all the ingredients of the counting formula for the NASS states

#NASS(N,�Nφ, k) =
∑′

N↑,↓,n↑,↓,F1,2

{
n↑ n↓
F1 F2

}
k

(N↑−F1

k
+ n↑

n↑

)(N↓−F2

k
+ n↓

n↓

)
(51)

where the prime on the sum indicates the constraints N↑ + N↓ = N , n↑ + n↓ = 2k�Nφ

and N↑ − N↓ = n↓ − n↑. The last constraint is a necessary condition for the state to be a
spin-singlet (for more information on the constraints, see [10]).

The case k = 2 was explicitly discussed in section 7. For k = 1 only the orbital degeneracy
factors remain, and we obtain the counting formula for a particular class of Halperin states
[28]. Indeed, for k = 1, the NASS states reduce to the spin-singlet Halperin states. As already
mentioned in section 7, the counting formula (51) with the symbols (50) exactly reproduces
the results of the diagonalization studies for k = 2 [10]. For k � 3, no numerical results are
available at the moment.

10. Discussion

In this paper, we explained in which way parafermions can be used to define clustered quantum
Hall states. The statistics of these parafermions is needed to understand the energy spectrum of
the clustered states in the presence of quasiholes, as obtained from a numerical diagonalization
study. We obtained explicit formulae for the symbols {}k for two classes of clustered states,
needed in the counting formulae. From these formulae, also the spin and angular momentum
multiplet structure of the quasihole degeneracies can be extracted.

One can say that the parafermion statistics is a crucial part in the understanding of the
ground state properties of a system of interacting electrons (via an ultra local interaction) on
the sphere in the presence of a magnetic field. In fact, we know of no other way in which this
energy spectrum can be understood. The observation that ground state properties of a system
of interacting electrons needs the knowledge of parafermion statistics is interesting by itself.

Recently, another class of paired (clustered) spin-singlet states was proposed [29]. An
interesting property of these states is that the fundamental excitations over these states show
a separation of the spin and charge degrees of freedom. We believe it should be possible to
repeat the present analysis for these newly proposed states, though it will be more difficult,
because the underlying parafermions are related to so(5), a non simply-laced Lie algebra. We
leave this as a challenge for future work.
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